Abstract
AbstractModern wind turbines have multiple sensors installed and provide constant data stream outputs; however, there are some important quantities where installing physical sensors is either impractical or the sensor technology is not sufficiently advanced. An example of such a problem is, for example, sensing the shape and location of wake‐induced wind deficits caused by upwind turbines—a feature which would have relevant application in wind farm control; however, it is hard to detect physically due to the need of scanning the airflow in front of the turbine in multiple locations. Another control‐related example is monitoring and predicting the blade tip‐tower clearance. A “virtual sensor” can be created instead, by establishing a mathematical relationship between the quantity of interest and other, measurable quantities such as readings from already available sensors (e.g., SCADA, lidars, and met‐masts). Machine Learning (ML) approaches are suitable for this task as ML algorithms are capable of learning and representing complex relationships. This study details the concept of ML‐based virtual sensors and showcases three specific examples: blade root bending moment prediction, detection of wind turbine wake center location, and forecasting of blade tip‐tower clearance. All examples utilize sequence models (Long Short‐Term Memory, LSTM) and use aeroelastic load simulations to generate wind turbine response time series and test model performance. The data types used in the examples correspond to channels that would be available from high‐frequency SCADA data combined with a blade and tower load measurement system. The resulting model performance demonstrates the feasibility of the ML‐based virtual sensor approach.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.