Abstract

To aid the development of future unmanned naval vessels, this manuscript investigates algorithm options for combining physical (noisy) sensors and computational models to provide additional information about system states, inputs, and parameters emphasizing deterministic options rather than stochastic ones. The computational model is formulated using Pontryagin’s treatment of Hamiltonian systems resulting in optimal and near-optimal results dependent upon the algorithm option chosen. Feedback is proposed to re-initialize the initial values of a reformulated two-point boundary value problem rather than using state feedback to form errors that are corrected by tuned estimators. Four algorithm options are proposed with two optional branches, and all of these are compared to three manifestations of classical estimation methods including linear-quadratic optimal. Over ten-thousand simulations were run to evaluate each proposed method’s vulnerability to variations in plant parameters amidst typically noisy state and rate sensors. The proposed methods achieved 69–72% improved state estimation, 29–33% improved rate improvement, while simultaneously achieving mathematically minimal costs of utilization in guidance, navigation, and control decision criteria. The next stage of research is indicated throughout the manuscript: investigation of the proposed methods’ efficacy amidst unknown wave disturbances.

Highlights

  • Inertial measurement units provide continuous and accurate estimates of motion states in between sensor measurements

  • State observers are duals of state controllers used for establishing decision criteria to declare accurate positions and rates and several instantiations are studied here when fused with noisy sensors, where theoretical analysis of the variance resulting from noise power is presented and validated in over ten-thousand Monte Carlo simulations

  • Classical feedback estimation methods are very effective at achieving very low estimation errors, but at higher costs utilizing the estimates in the decision criteria

Read more

Summary

Introduction

Inertial measurement units provide continuous and accurate estimates of motion states in between sensor measurements. The combination of physical sensors and computational models to provide additional information about system states, inputs, and/or parameters, is known as virtual sensoring. Virtual sensoring is becoming more and more popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics, and human biomechanics sectors. Challenges include the selection of the fusion algorithm and its parameters, the coupling or independence between the fusion algorithm and the multibody formulation, magnitudes to be estimated, the stability and accuracy of the adopted solution, optimization of the computational cost, real-time issues, and implementation on embedded hardware [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call