Abstract
Soybean protein isolate (SPI) and small molecule interactions have drawn more and more attention regarding their benefits for both parts, while research on large-scale investigations and comparisons of different compounds is absent. In this study, a high throughput virtual screening was applied on a phytochemical database with 1130 compounds to pinpoint the potential SPI binder. Pentagalloylglucose, narcissoside, poliumoside, isoginkgetin, and avicurin were selected as the top-five ranking molecules for further validation. Fluorescence quenching assays illustrated that isoginkgetin has a significantly higher apparent binding constant (Ka) of (0.060 ± 0.020) × 106 L·mol-1, followed by avicularin ((0.058 ± 0.010) × 106 L·mol-1), pentagalloylglucose ((0.049 ± 0.010) × 106 L·mol-1), narcissoside ((0.0013 ± 0.0004) × 106 L·mol-1), and poliumoside ((0.0012 ± 0.0006) × 106 L·mol-1). Interface characterization by MD simulation showed that protein residues E172, H173, G202, and V204 are highly involved in hydrogen bonding with the two carbonyl oxygens of isoginketin, which could be the crucial events in SPI binding. Van der Waals force was identified as the major driven force for isoginketin binding. Our study explored SPI-phytochemical interaction through multiple strategies, revealing the molecular binding details of isoginkgetin as a novel SPI binder, which has important implications for the utilization of the SPI-phytochemical complex in food applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.