Abstract

The breast cancer resistance protein (BCRP) is an ABC transporter playing a crucial role in the pharmacokinetics of drugs. The early identification of substrates and inhibitors of this efflux transporter can help to prevent or foresee drug-drug interactions. In this work, we built a ligand-based in silico classification model to predict the inhibitory potential of drugs toward BCRP. The model was applied as a virtual screening technique to identify potential inhibitors among the small-molecules subset of DrugBank. Ten compounds were selected and tested for their capacity to inhibit mitoxantrone efflux in BCRP-expressing PLB985 cells. Results identified cisapride (IC50 = 0.4 µM) and roflumilast (IC50 = 0.9 µM) as two new BCRP inhibitors. The in silico strategy proved useful to prefilter potential drug-drug interaction perpetrators among a database of small molecules and can reduce the amount of compounds to test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.