Abstract

Virtual screening is widely applied in drug discovery, and significant effort has been put into improving current methods. In this study, we have evaluated the performance of compound ranking in virtual screening using five different data fusion algorithms on a total of 16 data sets. The data were generated by docking, pharmacophore search, shape similarity, and electrostatic similarity, spanning both structure- and ligand-based methods. The algorithms used for data fusion were sum rank, rank vote, sum score, Pareto ranking, and parallel selection. None of the fusion methods require any prior knowledge or input other than the results from the single methods and, thus, are readily applicable. The results show that compound ranking using data fusion improves the performance and consistency of virtual screening compared to the single methods alone. The best performing data fusion algorithm was parallel selection, but both rank voting and Pareto ranking also have good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.