Abstract

<p>Virtual Screening plays an important role to achieve binding affinity, receptor and library pre-processing, docking, scoring and top scoring hits. Optimization of drug ADME parameters continues to play an important role to ensure that the exposure is sufficient to achieve proof of concept, and ultimately efficacy, safely in clinical trials to address unmet medical need.<strong> </strong>In order to identify potential inhibitors we employed various computational approaches. In this work, we computationally screened and analyzed 60 analogs and further tested their ADME/T profiles.<strong> </strong>Library of the molecules was constructed based upon structural modifications of pyrimidines and indole nucleus. Structural modifications were performed for the series of 4-(3-hydroxyphenyl)-6-methyl-2-oxo-N-substituted[(Z)-(2-oxoindolin-3-ylidene)amino]-3,4-dihydro-1H-pyrimidine-5-carboxamide derivatives in an order to get better binding energies as compared with Ispinseb. The molecules with better (lower) binding energies were subjected to predict ADMET properties. Ten molecules from the series IP1-IP60 were found acceptable with binding energies and pharmacokinetic properties. On the basis of the binding energies and ADMET properties we have identified compound IP2 and IP4 to be the best interacting molecules. The molecules with acceptable ADMET properties and better binding energies were prioritized for synthesis and anticancer evaluation. </p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call