Abstract
This chapter presents an effective means for exploring aggressive motorcycle trajectories. It discusses the problem of generating an optimal speed profile, taking into account the constraints imposed to the maximum acceleration and deceleration. The chapter describes a nonlinear control system (the virtual rider) with the capability of driving a multibody two-wheeled vehicle along a general user-specified ground path with a desired velocity profile. It describes a reduced-order manoeuvre regulation controller for controlling a multibody motorcycle model along the obtained optimal speed profile. The virtual rider is based on the sliding plane motorcycle (SPM) model. Dynamics inversion for the SPM model is obtained by embedding its dynamics into an extended control system by adding two non-physical control inputs. By optimizing away this additional control effort, a flatland trajectory can be converted into a full state-input trajectory. The controller is connected directly to an interface, allowing for closed-loop simulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.