Abstract

AbstractNumerical simulation is an established tool to improve knowledge of complex systems and to accelerate the development of new prototypes. In this contribution, the patented Active Grid® made by the company RM RUBBLE MASTER HMH GmbH is examined.In an initial step, representative system parameters (spring properties) are found via a multibody dynamic simulation; at this point, without particles acting on the system components. After that, the virtually defined Active Grid® system is loaded with particles in order to include the interaction effects of various bulk materials acting on the system’s mechanical components. For this purpose, a DEM-MBD co-simulation, extending the discrete element method (DEM) towards multibody dynamics (MBD) simulation, is performed, accounting for the bulk materials via DEM and the interacting system components via MBD. This bi-directional co-simulation enables the consideration of interactions between the bulk materials (the particles) and the driven spring-damper system (the moving system components).With this virtual prototype of the Active Grid®, performance benefits and characteristics in terms of screening efficiency for different material types and varying drive speeds are analysed. The overall aim is to achieve a scalable DEM-MBD model that allows virtual prototyping and, especially, optimisation for future system developments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call