Abstract
We prove that the amalgamated product of free groups with cyclic amalgamations satisfying certain conditions are virtually free-by-cyclic. In case the cyclic amalgamated subgroups lie outside the derived group such groups are free-by-cyclic. Similarly a one-relator HNN-extension in which the conjugated elements either coincide or are independent modulo the derived group is shown to be free-by-cyclic. In general, the amalgamated product of free groups with cyclic amalgamations is free-by-(torsion-free nilpotent). The special case of the double of a free group amalgamating a cyclic subgroup is shown to be virtually free-by-abelian. Analagous results are obtained for certain one-relator HNN-extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.