Abstract

In this paper is presented a Virtual Reality application that can be used for automatic generation of robot trajectories for spray painting operations conducted on products with complex surfaces. The trajectory generation for robots that perform painting operations of complex curved surfaces was achieved by implementing a generic algorithm capable of maintaining an optimal distance for painting. The distance between the effecter of the robot and the surface of the CAD model, used to compensate and maintain an optimal painting distance, is determined by a "rayhit" collision detection algorithm that allows the detection of the contact between a linear segment and the mesh of the virtual object. To visualize in the virtual environment the deposition of paint layers, an algorithm was implemented that is based on mapping techniques for dynamically generated textures on the surface that is being painted. A VR software application was developed for generating and visualizing the trajectories of a KUKA robotic system that performs the activity of painting a complex curved product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.