Abstract

Perfusionists require a detailed understanding of a patient’s physiological status while comprehending the mechanics and engineering of the cardiopulmonary bypass system, so it is beneficial for them to obtain relevant practical skills using extra-corporeal circulation technology and educational physiological simulators. We designed a perfusion simulator system (ECCSIM: Extracorporeal Circulation SIMulator system) based on a hybrid of a simple hydraulic mock circulation loop linked to a computer simulation model. Patient physiological conditions (height, weight, and cardiac indices) were determined by a parameter estimation procedure and used to accurately reproduce hemodynamic conditions. Extracorporeal circulation trainees in pre-clinical education were able to maintain venous oxygen saturation levels above 50%, except during cardiac standstill and a brief resumption of pulsation. Infant amplitudes of reservoir volume oscillation and flow rate were greatly increased compared with adult cardiovascular parameters, this enabled the instructor to control the difficulty level of the operation using different hemodynamic variations. High-fidelity simula tor systems with controllable difficulty levels and high physiological reproducibility are useful in constructing a perfusion resource management environment that enable basic training and periodic crisis management drills to be performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.