Abstract
Based on the concept of infrastructure as a service, optical network virtualization can facilitate the sharing of physical infrastructure among different users and applications. In this paper, we design algorithms for both transparent and opaque virtual optical network embedding (VONE) over flexible-grid elastic optical networks. For transparent VONE, we first formulate an integer linear programming (ILP) model that leverages the all-or-nothing multi-commodity flow in graphs. Then, to consider the continuity and consecutiveness of substrate fiber links' (SFLs') optical spectra, we propose a layered-auxiliary-graph (LAG) approach that decomposes the physical infrastructure into several layered graphs according to the bandwidth requirement of a virtual optical network request. With LAG, we design two heuristic algorithms: one applies LAG to achieve integrated routing and spectrum assignment in link mapping (i.e., local resource capacity (LRC)-layered shortest-path routing LaSP), while the other realizes coordinated node and link mapping using LAG (i.e., layered local resource capacity(LaLRC)-LaSP). The simulation results from three different substrate topologies demonstrate that LaLRC-LaSP achieves better blocking performance than LRC-LaSP and an existing benchmark algorithm. For the opaque VONE, an ILP model is also formulated. We then design a LRC metric that considers the spectrum consecutiveness of SFLs. With this metric, a novel heuristic for opaque VONE, consecutiveness-aware LRC-K shortest-path-first fit (CaLRC-KSP-FF), is proposed. Simulation results show that compared with the existing algorithms, CaLRC-KSP-FF can reduce the request blocking probability significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.