Abstract

Virtualizing and sharing networked resources have become a growing trend that reshapes the computing and networking architectures. Embedding multiple virtual networks (VNs) on a shared substrate is a challenging problem on cloud computing platforms and large-scale sliceable network testbeds. In this paper we apply the Markov Random Walk (RW) model to rank a network node based on its resource and topological attributes. This novel topology-aware node ranking measure reflects the relative importance of the node. Using node ranking we devise two VN embedding algorithms. The first algorithm maps virtual nodes to substrate nodes according to their ranks, then embeds the virtual links between the mapped nodes by finding shortest paths with unsplittable paths and solving the multi-commodity flow problem with splittable paths. The second algorithm is a backtracking VN embedding algorithm based on breadth-first search, which embeds the virtual nodes and links during the same stage using node ranks. Extensive simulation experiments show that the topology-aware node rank is a better resource measure and the proposed RW-based algorithms increase the long-term average revenue and acceptance ratio compared to the existing embedding algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.