Abstract

In this work the connectivity preserving problem of multiple agents with limited communication ranges in the context of rendezvous tasks has been investigated. The communication among agents is considered to be unreliable and the control inputs of agents are required to be bounded. Based on the explicitly defined virtual neighbors, the proximity graph connectivity of the agent group has been preserved. Moreover, by using the constraint function approach, the control inputs are guaranteed to be bounded, which can be easily implemented in practice. It is proved that the proposed control law can not only ensure union connectivity of the underlying communication graph, but also drive the agents to rendezvous. The effectiveness of the control law is illustrated by numerical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.