Abstract

Abstract The prediction of liquid holdup and multiphase flow regimes present in a well or pipeline is very important to the petroleum industry. Liquid holdup, defined as the fraction of pipe occupied by liquid, and flow regimes must be predicted to design separation equipment and slug catchers in pipeline operations properly. It is also important when designing gas storage fields in depleted oil reservoirs. A new methodology was developed to model multiphase flow conditions for pipelines and wellbores using only known surface data, This methodology, which has been named Virtual Measurement in Pipes (VMP), incorporates an innovative use of information technology and computational intelligence, to address the development of tools for the engineer to use in the design process for a variety of conditions. Artificial neural networks (ANN) were used to develop a Virtual Measurement Tool to survey the liquid holdup and flow regimes in nonspecific multiphase flow systems using readily available data. The VMP methodology was tested for validity by comparing virtually measured values with published measurements, As a result, the method proved to be an accurate virtual measuring tool to predict liquid holdup and flow regimes in multiphase flowing pipelines and wellbores, The VMP methodology also demonstrated an enhancement to existing industry recognized correlations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call