Abstract
IntroductionThe aim of this study was to generate virtual Magnetic resonance (MR) from computed tomography (CT) using conditional generative adversarial networks (cGAN). MethodsWe selected examinations from 22 adults who obtained their CT and MR lumbar spine examinations. Overall, 4 examinations were used as test data, and 18 examinations were used as training data. A cGAN was trained to generate virtual MR images from the CT images using the corresponding MR images as targets. After training, the generated virtual MR images from test data in epochs 1, 10, 50, 100, 500, and 1000 were compared with the original ones using the mean square error (MSE) and structural similarity index (SSIM). Additionally, two radiologists also performed qualitative assessments. ResultsThe MSE of the virtual MR images decreased as the epoch of the cGANs increased from the original CT images: 8876.7 ± 1192.9 (original CT), 1567.5 ± 433.9 (Epoch 1), 1242.4 ± 442.0 (Epoch 10), 1065.8 ± 478.1 (Epoch 50), 1276.1 ± 718.9 (Epoch 100), 1046.7 ± 488.2 (Epoch 500), and 1031.7 ± 400.0 (Epoch 1000). No considerable differences were observed in the qualitative evaluation between the virtual MR images and the original ones, except in the structure of the spinal canal. ConclusionVirtual MR lumbar spine images using cGANs could be a feasible technique to generate near-MR images from CT without MR examinations for evaluation of the vertebral body and intervertebral disc. Implications for practiceVirtual MR lumbar spine images using cGANs can offer virtual CT images with sufficient quality for attenuation correction for PET or dose planning in radiotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.