Abstract
In the light field imaging, the geometrical parameters’ calibration of the light field camera is the foundation of computational imaging techniques, such as the calibration of the light field data, digital refocusing, depth reconstruction, all-in-focus imaging, and so on. In this paper, we propose a virtual image points based geometrical parameters’ calibration for focused light field camera. In the forward model, the mapping from the object points to the virtual image points with respect to the main lens as well as the mapping from the virtual image points to the image points on the detector with respect to the microlens array are established. While calibrating geometrical parameters, the inverse problem of calculating the virtual image points from the corner on the detector is established and the model of calculating the geometrical parameters of the focused light field camera is established. Levenberg–Marquardt algorithm is used to solve the geometrical parameters iteratively. We use the checkerboard for the calibration experiment and validate the calculation via the reprojection of the checkerboard corners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.