Abstract

The human hand plays an important role in daily life. It is the interface between the human and the exterior world by positioning, orienting, touching and grasping objects. The human hand has multiple degrees of freedom (DOFs) to enable mobility and dexterity. A virtual human hand model can be inserted into CAD (Computer Aided Design) models to assess the manipulation capabilities in the early design stage to reduce design time and cost. Joystick assessment is one of the important design cases. This study is a first step towards a comprehensive hand simulation tool to simulate the manipulation and grasping of objects. This paper presents a novel 25 DOFs' hand skeletal model based on hand anatomy and hand kinematics: (1) joint range of motion, (2) Denavit–Hartenberg method to define the joint relationship and (3) finger workspace determination. Novelty for this hand model includes arching the palm with the four DOFs added in the carpometacarpal and wrist joints for the ring and small fingers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.