Abstract
Large overpressures can be produced when a high-speed train enters and crosses a railway tunnel. Predicting them is important since, in critical conditions, pressure variations may be dangerous for train structures and for passengers’ health and comfort. European regulations impose pressure thresholds which trains must comply with in order to be homologated for travelling through tunnels. Currently, full-scale tests are required to demonstrate respect of these prescriptions. In this work, a procedure for calculating the pressure variations inside the tunnel based on 3 D steady CFD simulations and a 1 D compressible fluid-dynamics model is proposed, to be used both as a design tool and for virtual homologation of new rolling stock. Results of a large experimental campaign performed on the Italian high-speed line are used to set-up the proposed methodology and to validate it. Different train geometries, tunnel crossing speeds and tunnel initial air conditions are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.