Abstract

Efficiency and quality are major factors contributing to profits in manufacturing systems. Production downtime occurs during commissioning of a new system, adoption of new processes, system faults, or (un)planned maintenance; all of which result in reduced production and profit loss. Current techniques for evaluating change to a manufacturing system rely on simulation and modeling to verify processes, but ignore the physical interactions of the work parts on the system. Implementation techniques to evaluate commissioning focus on identifying issues with the cyber interfaces, ignoring the physical interfaces. To validate the cyber and physical interfaces simultaneously, physical work are sent through the system, resulting in significant costs from scrapped work parts and loss of production time. This research proposes a virtual fusion environment where the physical interfaces between a virtual work part and a manufacturing system can be investigated in real-time, on the physical system, without the expenses associated with physical work parts. The virtual environment includes a virtual fusion filter to monitor discrepancies between the physical and virtual systems, and generate a hybrid virtual-physical input signal to the system level controller for virtualisation of a work part onto a physical system. Experimental demonstrations validate the feasibility of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.