Abstract

A cane-type robot called intelligent cane has been developed to support the elderly during walking. By supporting a part of a user's body weight, the cane robot aims to reduce a load applied to a user's affected leg. Therefore, while the user's affected leg is a support leg, it is preferable that the cane robot stops to sufficiently support the user. In our previous work, the cane robot is controlled based on horizontal component of force applied to the cane robot and moment around a vertical axis. In this paper, virtual friction force, which is proportional to vertical component of force, is proposed to improve a walking assistance capability of the cane robot. In addition, virtual frictional coefficients are arranged based on the user's state inferred by a laser range finder. By employing the proposed method, the cane robot moves easily in the both legs support phase, stops in the healthy leg support phase, and supports the user reliably in the affected leg support phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.