Abstract
The first case of virtual polymerization based on the concept of digital twins (DTs) is presented. The free-radical polymerization of vinyl monomers is considered to be a chain reaction consisting of a set of elementary ones. Those three types, related to the polymerization initiation and propagation as well as to the termination of polymer chain growth, are discussed. Special sets of DTs, whose total number approaches 60, distinguish each reaction type. The calculations are carried out using a semi-empirical version of the unrestricted Hartree-Fock approximation. The main energy and spin-density parameters of the ground state of the DTs are determined. The barrier profiles of two pairs of DTs are calculated, based on which two Evans-Polanyi-Semenov relations, attributed to elementary reactions of type (1) and (2), are constructed. These provide a quite reliable evaluation of the activation energy for the initiation and propagation of the free-radical polymerization of vinyl monomers in all the cases. The decisive role of spins in the formation of the elementary reaction transition states is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.