Abstract

This paper proposes a Virtual Flux Predictive Direct Power Control (PDPC) for a five-level T-type multi-terminal Voltage Source Converter High Voltage Direct Current (VSC-HVDC) transmission system. The proposed PDPC scheme is based on the computation of the average voltage vector using a virtual flux predictive control algorithm, which allows the cancellation of active and reactive power tracking errors at each sampling period. The active and reactive power can be estimated based on the virtual flux vector that makes AC line voltage sensors not necessary. A constant converter switching frequency is achieved by employing a multilevel space vector modulation, which ensures the balance of the DC capacitor voltages of the five-level t-type converters as well. Simulation results validate the efficiency of the proposed control law, and they are compared with those given by a traditional direct power control. These results exhibit excellent transient responses during range of operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call