Abstract

We develop a novel Virtual Element Method (VEM) to resolve the mixed Biot displacement-pressure formulation governing wave propagation in porous media. Within this setting, the weak form of the governing equations is discretized using implicitly defined canonical basis functions and the resulting integral forms are computed using appropriate polynomial projections. The projection operator accounting for the solid, fluid, and coupling phases of the problem are presented. Different boundary, interface and excitation conditions are accounted for. The convergence behaviour, accuracy, and efficiency of the method is examined through a set of illustrative examples. A node insertion strategy is proposed to resolve non-conforming interfaces that naturally arise in multilayered systems. Finally the power of the VEM is exploited to examine the acoustic response of composite materials with periodic and non-periodic inclusions of complex geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call