Abstract

In this paper, we employ the linear virtual element spaces to discretize the semilinear sine–Gordon equation in two dimensions. The salient features of the virtual element method (VEM) are: (a) it does not require explicit form of the shape functions to construct the nonlinear and the bilinear terms, and (b) relaxes the constraint on the mesh topology by allowing the domain to be discretized with general polygons consisting of both convex and concave elements, and (c) easy mesh refinements (hanging nodes and interfaces are allowed). The nonlinear source term is discretized by employing the product approximation technique and for temporal discretization, the Crank–Nicolson scheme is used. The resulting nonlinear equations are solved using the Newton’s method. We derive a priori error estimations in L2 and H1 norms. The convergence properties and the accuracy of the virtual element method for the solution of the sine–Gordon equation are demonstrated with academic numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.