Abstract

The mechanistic target of rapamycin (mTOR) coordinates the growth and metabolism of eukaryotic cells with a central role in the regulation of many fundamental cellular processes. It is strongly connected to phosphatidylinositol 3-kinase (PI3K) and AKT signaling. Activation of the PI3K/AKT/mTOR pathway leads to a profound disruption in the control of cell growth and survival, which ultimately leads to competitive growth advantage, metastatic competence, angiogenesis and therapeutic resistance. To explore the common competitive adenosine triphosphate (ATP) inhibitors PI3K/AKT and PI3K/mTOR, we built a 2D mTOR-SAR model that predicted the bioactivity of AKT and PI3K inhibitors towards mTOR. The interaction of the best inhibitors was evaluated by docking analysis and compared to that of the standard AZ8055 and XL388 inhibitors. A mechanistic target of rapamycin-quantitative structure-activity relationship (mTOR-QSAR) model with a correlation coefficient (R2) of 0.80813 and a root mean square error of 0.17756 was obtained, validated and evaluated by a cross-validation leave-one-out method. The best predicted AKT and PI3K inhibitor pIC50 activities were 9.36-9.95 and 9.23-9.87 respectively. After docking and several comparisons, the inhibitors with better predictions showed better affinity and interaction with mTOR compared to AZ8055 and XL388, so we have found that 2 AKT inhibitors and 9 mTOR inhibitors met the Lipinski and Veber criteria and could be future drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call