Abstract

This paper investigates the cooperative control problem of multiple high-speed trains subject to unknown parameters and actuator faults. The cooperative operation of multiple high-speed trains is modeled as a coupled control system. On the basis of the virtual coupling technique, the H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> active fault-tolerant cooperative control scheme is established to guarantee the desired tracking performances and cooperative performances. The adaptive control technique is adopted to estimate the unknown Davis’ coefficients and the fault parameters and linear matrix inequalities are utilized to derive the control gain of the cooperative control protocols for the trains. Rigorous analysis is provided to corroborate the closed-loop stability of the cooperative train control system and numerical simulation is conducted to verify the effectiveness and feasibility of the proposed results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call