Abstract

We show that the Quot scheme $\text{Quot}_{\mathbf{A}^3}(\mathcal{O}^r,n)$ admits a symmetric obstruction theory, and we compute its virtual Euler characteristic. We extend the calculation to locally free sheaves on smooth $3$-folds, thus refining a special case of a recent Euler characteristic calculation of Gholampour-Kool. We then extend Toda's higher rank DT/PT correspondence on Calabi-Yau $3$-folds to a local version centered at a fixed slope stable sheaf. This generalises (and refines) the local DT/PT correspondence around the cycle of a Cohen-Macaulay curve. Our approach clarifies the relation between Gholampour-Kool's functional equation for Quot schemes, and Toda's higher rank DT/PT correspondence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.