Abstract
This paper presents a control approach for bounding gait of quadruped robots by applying the concept of Virtual Constraints (VCs). A VC is a relative motion relation between two related joints imposed to the robots in terms of a specified gait, which can drive the robot to run with desired gait. To determine VCs for highly dynamic bounding gait, the limit cycle motions of the passive dynamic model of bounding gait are analyzed. The leg length and hip/shoulder angle trajectories corresponding to the limit cycles are parameterized by leg angles using 4 th-order polynomials. In order to track the calculated periodic motions, the polynomials are imposed on the robot as virtual motion constraints by a high-level state machine controller. A bounding speed feedback strategy is introduced to stabilize the robot running speed and enhance the stability. The control approach was applied to a newly designed lightweight bioinspired quadruped robot, AgiDog. The experimental results demonstrate that the robot can bound at a frequency up to 5 Hz and bound at a maximum speed of 1.2 m·s−1 in sagittal plane with a Froude number approximating to 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.