Abstract
Time-delayed systems are found to display remarkable temporal patterns the dynamics of which split into regular and chaotic components repeating at the interval of a delay. This novel long-term behavior for delay dynamics results from strongly asymmetric nonlinear delayed feedback driving a highly damped harmonic oscillator dynamics. In the corresponding virtual space-time representation, the behavior is found to develop as a chimeralike state, a new paradigmatic object from the network theory characterized by the coexistence of synchronous and incoherent oscillations. Numerous virtual chimera states are obtained and analyzed, through experiment, theory, and simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.