Abstract

Cochlear implant users’ spectral resolution is limited by both the number of implanted electrodes and channel interactions between electrodes. Current steering (virtual channels) between two adjacent monopolar electrodes has been used to increase the number of spectral channels across the electrode array. However, monopolar stimulation is associated with large current spread and increased channel interaction. Current focusing across three adjacent electrodes (tripolar stimulation) has been used to reduce electrode current spread and improve channel selectivity. In the present study, current steering and current focusing were combined within a four-electrode stimulation pattern (quadrupolar virtual channels), thereby addressing the need for both increased channels and reduced current spread. Virtual channel discrimination was measured in 7 users of the Advanced Bionics Clarion II or HiRes 90K implants; virtual channel discrimination was compared between monopolar and quadrupolar virtual channels at three stimulation sites. The results showed that quadrupolar virtual channels provided better spectral resolution than monopolar virtual channels. The results suggested that quadrupolar virtual channels might provide the “best of both worlds” improving the number of spectral channels while reducing channel interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call