Abstract

Due to the costliness of labelled data in real-world applications, semi-supervised learning, underpinned by pseudo labelling, is an appealing solution. However, handling confusing samples is nontrivial: discarding valuable confusing samples would compromise the model generalisation while using them for training would exacerbate the issue of confirmation bias caused by the resulting inevitable mislabelling. To solve this problem, this paper proposes to use confusing samples proactively without label correction. Specifically, a Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation even without a concrete label. This provides an upper bound for inter-class information sharing capacity, which eventually leads to a better embedding space. Extensive experiments on two mainstream dense prediction tasks - semantic segmentation and object detection, demonstrate that the proposed VC learning significantly surpasses the state-of-the-art, especially when only very few labels are available. Our intriguing findings highlight the usage of VC learning in dense vision tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.