Abstract
We derive analytical expressions for the symbol error probability (SEP) for a hybrid selection/maximal-ratio combining (H-S/MRC) diversity system in multipath-fading wireless environments. With H-S/MRC, L out of N diversity branches are selected and combined using maximal-ratio combining (MRC). We consider coherent detection of M-ary phase-shift keying (MPSK) and quadrature amplitude modulation (MQAM) using H-S/MRC for the case of independent Rayleigh fading with equal signal-to-noise ratio averaged over the fading. The proposed problem is made analytically tractable by transforming the ordered physical diversity branches, which are correlated, into independent and identically distributed (i.i.d.) "virtual branches," which results in a simple derivation of the SEP for arbitrary L and N. We further obtain a canonical structure for the SEP of H-S/MRC as a weighted sum of the elementary SEPs, which are the SEPs using MRC with i.i.d. diversity branches in Rayleigh fading, or equivalently the SEPs of the nondiversity (single-branch) system in Nakagami fading, whose closed-form expressions are well-known. We present numerical examples illustrating that H-S/MRC, even with L/spl Lt/N, can achieve a performance close to that of N-branch MRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.