Abstract

Abstract Moving least squares approximation (MLSA) has been widely used in the meshless method. The singularity should appear in some special arrangements of nodes, such as the data nodes lie along straight lines and the distances between several nodes and calculation point are almost equal. The local weighted orthogonal basis functions (LWOBF) obtained by the orthogonalization of Gramm–Schmidt are employed to take the place of the general polynomial basis functions in MLSA. In this paper, MLSA with LWOBF is introduced into the virtual boundary meshless least square integral method to construct the shape function of the virtual source functions. The calculation format of virtual boundary meshless least square integral method with MLSA is deduced. The Gauss integration is adopted both on the virtual and real boundary elements. Some numerical examples are calculated by the proposed method. The non-singularity of MLSA with LWOBF is verified. The number of nodes constructing the shape function can be less than the number of LWOBF and the accuracy of numerical result varies little.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.