Abstract

This paper proposes a virtual architecture for three-dimensional (3D) wireless sensor networks (WSNs), a dynamic coordinate system, and a scalable energy-efficient training protocol for collections of nodes deployed in the space that are initially anonymous, asynchronous, and unaware of their initial location. The 3D WSNs considered comprise massively deployed tiny energy-constrained commodity sensors and one or more sink nodes that provide an interface to the outside world. The proposed architecture is a generalization of a two-dimensional virtual architecture previously proposed in the literature, in which a flexible and intuitive coordinate system is imposed onto the deployment area and the anonymous nodes are partitioned into clusters where data can be gathered from the environment and synthesized under local control. The architecture solves the hidden sensors problem that occurs because of irregularities in rugged deployment areas or environments containing buildings by training the network of nodes arbitrarily dispersed in the 3D space. In addition, we derive two simple and energy-efficient routing protocols, respectively for dense and sparse networks, based on the proposed dynamic coordinate system. They are used to minimize the power expended in collecting and routing data to the sink node, thus increasing the lifetime of the network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call