Abstract

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.

Highlights

  • Careful consideration of the effects of taphonomic processes within the grave is important for interpreting treatment of the body and understanding mortuary ritual in the past

  • To providing an animated visualization of the archaeothanatological reconstruction, the simulation process helped strengthen the archaeothanatological reconstruction and interpretation of the natural decomposition process in a filled grave, which was followed by a single disturbance event imposing force on the elevated portions of the body in west to east direction, by allowing us to rule out certain motion paths and by confirming the simultaneous or sequential movement of individual bones during the disturbance

  • In exploring the potential of this procedure to assist in archaeothanatological analysis, we selected a case study that would present a challenge to the technical aspects of the procedure, but would not necessarily be considered a challenging case for archaeothanatological investigation

Read more

Summary

Introduction

Careful consideration of the effects of taphonomic processes within the grave is important for interpreting treatment of the body and understanding mortuary ritual in the past. Article note: This article is a part of the Special Issue on Art, Creativity and Automation. This work is licensed under the Creative Commons. Virtual Archaeology of Death and Burial: 3D Visualization in Archaeothanatology 541 of human anatomy and decomposition processes to interpret the spatial configuration of bones in a deposit. Archaeothanatology assumes that the configuration in which the bones are discovered is the product of the original position and the condition that the body was placed in, along with the shape, dimensions and material characteristics of the burial environment, taphonomic processes and human actions during mortuary treatment. The precise position of and spatial relationships between the bones are used to infer whether the burial is a primary or secondary deposit, to distinguish collective burials (accumulated over time) from multiple burials (simultaneous deposition), to reveal whether the body was originally placed in a (perishable) container, to determine the stage of decomposition of the body upon burial (e.g. fresh and mummified), to identify postmortem and postdepositional manipulation of the body and grave (e.g. intentional removal of bodies/body parts) and to establish whether the burial occurred immediately after death or was delayed (Castex & Blaizot, 2017; Duday & Guillon, 2006; Duday, 2009; Harris & Tayles, 2012; Knüsel, 2014; Maureille & Sellier, 1996; Nelson, 1998; Ortiz, Chambon, & Molist, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call