Abstract

The rapid spread of the coronavirus disease 2019 (COVID-19) resulted in serious health, social, and economic consequences. While the development of effective vaccines substantially reduced the severity of symptoms and the associated deaths, we still urgently need effective drugs to further reduce the number of casualties associated with SARS-CoV-2 infections. Machine learning methods both improved and sped up all the different stages of the drug discovery processes by performing complex analyses with enormous datasets. Natural products (NPs) have been used for treating diseases and infections for thousands of years and represent a valuable resource for drug discovery when combined with the current computation advancements. Here, a dataset of 406,747 unique NPs was screened against the SARS-CoV-2 main protease (Mpro) crystal structure (6lu7) using a combination of ligand- and structural-based virtual screening. Based on 1) the predicted binding affinities of the NPs to the Mpro, 2) the types and number of interactions with the Mpro amino acids that are critical for its function, and 3) the desirable pharmacokinetic properties of the NPs, we identified the top 20 candidates that could potentially inhibit the Mpro protease function. A total of 7 of the 20 top candidates were subjected to in vitro protease inhibition assay and 4 of them (4/7; 57%), including two beta carbolines, one N-alkyl indole, and one Benzoic acid ester, had significant inhibitory activity against Mpro protease. These four NPs could be developed further for the treatment of COVID-19 symptoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.