Abstract

A unified distributed reinforcement learning (RL) solution is offered for both static and dynamic economic dispatch problems (EDPs). Each agent is assigned with a fixed, discrete, virtual action set, and a projection method generates the feasible, actual actions to satisfy the constraints. A distributed algorithm, based on singularly perturbed system, solves the projection problem. A distributed form of Hysteretic Q-learning achieves coordination among agents. Therein, the Q-values are developed based on the virtual actions, while the rewards are produced by the projected actual actions. The proposed algorithm deals with continuous action space and power loads without using function approximations. Theoretical analysis and comparative simulation studies verify algorithm's convergence and optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.