Abstract
We propose a general kinetic and hydrodynamic description of self-gravitating Brownian particles in d dimensions. We go beyond the usual approximations by considering inertial effects and finite-N effects while previous works use a mean-field approximation valid in a proper thermodynamic limit (N --> +infinity) and consider an overdamped regime (xi --> +infinity). We recover known models in some particular cases of our general description. We derive the expression of the virial theorem for self-gravitating Brownian particles and study the linear dynamical stability of isolated clusters of particles and uniform systems by using techniques introduced in astrophysics. We investigate the influence of the equation of state, of the dimension of space, and of the friction coefficient on the dynamical stability of the system. We obtain the exact expression of the critical temperature Tc for a multicomponents self-gravitating Brownian gas in d = 2. We also consider the limit of weak frictions, xi --> 0, and derive the orbit-averaged Kramers equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.