Abstract

A version of the virial theorem is derived in a brane-world scenario in the framework of a warped DGP model where the action on the brane is an arbitrary function of the Ricci scalar, \(\mathcal{L}(R)\). The extra terms in the modified Einstein equations generate an equivalent mass term (geometrical mass), which give an effective contribution to the gravitational energy and offer viable explanation to account for the virial mass discrepancy in clusters of galaxies. We also obtain the radial velocity dispersion of galaxy clusters and show that it is compatible with the radial velocity dispersion profile of such clusters. Finally, we compare the result of the model with \(\mathcal{L}(R)\) gravity theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.