Abstract
Quantum virial expansion provides an ideal tool to investigate the high-temperature properties of a strongly correlated Fermi gas. Here, we construct the virial expansion in the presence of spin-population imbalance. Up to the third order, we calculate the high-temperature free energy of a unitary Fermi gas as a function of spin imbalance, with infinitely large attractive or repulsive interactions. In the latter repulsive case, we show that there is no itinerant ferromagnetism when quantum virial expansion is applicable. We therefore estimate an upper bound for the ferromagnetic transition temperature ${T}_{c}$. For a harmonically trapped Fermi gas at unitarity, we find that $({T}_{c}){}_{\mathrm{upper}}<{T}_{F}$, where ${T}_{F}$ is the Fermi temperature at the center of the trap. Our result for the high-temperature equations of state may confront future high-precision thermodynamic measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.