Abstract

We study the penetrable sphere (alias square mound) model in the fluid phase by means of the virial expansion, molecular dynamics simulations, and Ornstein-Zernike integral equation. The virial coefficients up to B(8) are expressed as polynomials in the Boltzmann factor with the coefficients calculated by a Monte Carlo integration. New data for pressure and internal energy are obtained by molecular dynamics simulations with attention paid to finite-size errors and properties of the Andersen thermostat. The data and virial coefficients are correlated by a formula for the Helmholtz free energy. We also propose a new closure for the Ornstein-Zernike equation and test several other closures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.