Abstract
We describe a geometric theory of Virasoro constraints in generalized Drinfeld-Sokolov hierarchies. Solutions of Drinfeld-Sokolov hierarchies are succinctly described by giving a principal bundle on a complex curve together with the data of a Higgs field near infinity. String solutions for these hierarchies are defined as points having a big stabilizer under a certain Lie algebra action. We characterize principal bundles coming from string solutions as those possessing connections compatible with the Higgs field near infinity. We show that tau-functions of string solutions satisfy second-order differential equations generalizing the Virasoro constraints of 2d quantum gravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.