Abstract
Gene expression mediated by viral vectors is subject to cell-to-cell variability, which limits the accuracy of gene delivery. When coupled with single-cell measurements, however, such variability provides an efficient means to quantify signaling dynamics in mammalian cells. Here, we illustrate the utility ofthis approach by mapping the E2f1 response to MYC, serum stimulation, or both. Our results revealed an underappreciated mode of gene regulation: E2f1 expression first increased, then decreased as MYC input increased. This biphasic pattern was also reflected in other nodes of the network, including the miR-17-92 microRNA cluster and p19Arf. A mathematical model of the network successfully predicted modulation of the biphasic E2F response byserum and a CDK inhibitor. In addition to demonstrating how noise can be exploited to probe signaling dynamics, our results reveal how coordination of the MYC/RB/E2F pathway enables dynamic discrimination of aberrant and normal levels of growth stimulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.