Abstract

Genetic modification of germline stem cells (GSCs) is an alternative approach to generate large transgenic animals where transgenic GSCs are transplanted into a recipient testis to generate donor-derived transgenic sperm. The objective of the present study was to explore the application of viral vectors in delivering an enhanced green fluorescent protein (EGFP) transgene into GSCs for production of transgenic gametes through germ cell transplantation. Both adeno-associated virus (AAV)- and lentivirus (LV)-based vectors were effective in transducing pig GSCs, resulting in the production of transgenic sperm in recipient boars. Twenty-one boars treated with busulfan to deplete endogenous GSCs and nine nontreated boars received germ cell transplantation at 12 wk of age. Semen was collected from recipient boars from 5 to 7 mo posttransplantation when boars became sexually mature, and semen collection continued for as long as 5 yr for some boars. The percentage of ejaculates that were positive for the EGFP transgene ranged from 0% to 54.8% for recipients of AAV vector-transduced germ cells (n = 17) and from 0% to 25% for recipients of LV vector-transduced germ cells (n = 5). When semen from two AAV recipients was used for in vitro fertilization (IVF), 9.09% and 64.3% of embryos were transgenic. Semen collected from two LV-vector recipients produced 7.7% and 26.3% transgenic IVF embryos. Here, we not only demonstrated AAV-mediated GSC transduction in another large animal model (pigs) but also showed, to our knowledge for the first time, that LV-mediated GSC transduction resulted in transgene transmission in pigs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.