Abstract

1. Site-directed mutagenesis of human plasma butyrylcholinesterase has led to novel hydrolases that rapidly destroy cocaine. We are investigating whether viral gene transfer of such enzymes might reduce addiction liability by blocking cocaine from its sites of action. 2. As groundwork for a possible gene therapy, we previously studied adenoviral transduction of cocaine hydrolases in the rat. Systemically injected vectors raised plasma cocaine hydrolase activity greatly, reduced pressor responses to cocaine, and lowered cocaine's tissue burden. 3. In the present study, to reduce cocaine's brain access still further, vectors were injected directly into the nucleus accumbens. Six days later, medium sized neurons gained dramatic butyrylcholinesterase activity. Species-selective immunohistochemistry proved that the transgene accounted for this activity. 4. Since the transgene product is so efficient with cocaine as a substrate, it is now reasonable to begin testing gene therapy in rodent models of cocaine addiction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.