Abstract

Virus-specific CD8+ T cells (TCD8+) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector TCD8+. Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated TCD8+ response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the TCD8+ response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.

Highlights

  • CD8+ T cells (TCD8+) play important roles in host elimination of pathogens, tumors and transplanted tissues

  • We investigated the pathways used for presentation of vaccinia virus (VACV) antigens driven by late promoters

  • CD8+ T cells are activated following recognition of small peptides derived from a virus that binds to a cell surface major histocompatibility complex (MHC) molecule

Read more

Summary

Introduction

CD8+ T cells (TCD8+) play important roles in host elimination of pathogens, tumors and transplanted tissues. Virus-specific TCD8+ recognize major histocompatibility complex (MHC) class I molecules bound to peptides derived from viral proteins [1]. These peptide-MHC complexes can be generated via two spatially distinct pathways. Virus-infected cells present peptides derived primarily from a subset of viral proteins that are rapidly degraded in a process known as direct presentation [2]. Longlived protein substrates may be transferred from virus-infected cells to pAPC where they are processed and presented by uninfected cells via the cross-presentation pathway [3]. The extent to which the direct or cross-presentation pathways contribute to the induction of virus-specific TCD8+ in vivo remains controversial [4]. We delineate a unique mechanism of viral immune evasion whereby viral antigen is prevented from entering the cross-presentation pathway

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call