Abstract

RNA structure is critically important to RNA viruses in every part of the replication cycle. RNA structure is also utilized by DNA viruses in order to regulate gene expression and interact with host factors. Advances in next-generation sequencing have greatly enhanced the utility of chemical probing in order to analyze RNA structure. This review will cover some recent viral RNA structural studies using chemical probing and next-generation sequencing as well as the advantages of dimethyl sulfate (DMS)-mutational profiling and sequencing (MaPseq). DMS-MaPseq is a robust assay that can easily modify RNA in vitro, in cell and in virion. A detailed protocol for whole-genome DMS-MaPseq from cells transfected with HIV-1 and the structure of TAR as determined by DMS-MaPseq is presented. DMS-MaPseq has the ability to answer a variety of integral questions about viral RNA, including how they change in different environments and when interacting with different host factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call