Abstract

AbstractViruses can amplify their genomes following different replication modes (RMs) ranging from the stamping machine replication (SMR) model to the geometric replication (GR) model. Different RMs are expected to produce different evolutionary and dynamical outcomes in viral quasi-species due to differences in the mutations accumulation rate. Theoretical and computational models revealed that while SMR may provide RNA viruses with mutational robustness, GR may confer a dynamical advantage against genomes degradation. Here, recent advances in the investigation of the RM in positive-sense single-stranded RNA viruses are reviewed. Dynamical experimental quantification of Turnip mosaic virus RNA strands, together with a nonlinear mathematical model, indicated the SMR model for this pathogen. The same mathematical model for natural infections is here further analyzed, and we prove that the interior equilibrium involving coexistence of both positive and negative viral strands is globally asymptotically stable.KeywordsTurnip Mosaic VirusGeometric Replication (GR)Mutation Accumulation RateInterior EquilibriumQuasispeciesThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call