Abstract
Nervous necrosis virus (NNV) which mainly infects sevenband grouper (Hyporthodus Septemfasciatus) is considered a potential threat to the grouper aquaculture industry. The gills being one of the portal of entry and an active site of replication of fish viruses emphasises its role as a key region to study the metabolomic changes caused by viral reprograming and hijacking of metabolic pathways associated with immunity of the host. In the present study, liquid chromatography mass spectrometry (LC-MS) was used to detect changes of endogenous compounds of the grouper after NNV infection. A total of 75 metabolites of ten different pathways were identified. The metabolites were mainly associated with fatty acids, lipids, amino acids and nucleotides. The virus reprogramming lead to the downregulation of majority of the metabolites in their pathways. Arachidonic acid (AA), tryptophan, kynurenine and methandriol were selected as representative metabolites and challenge studies with NNV confirmed the fact that, metabolites controlled the replication of virus in a dose dependent manner. Immune gene expression studies also confirmed the effect of metabolites by upregulated expression of interleukins, cytokines and TLRs which are part of cellular immune response. This study shows the viral reprogramming of NNV in grouper gill cells resulting in alterations in basic metabolic pathways associated with normal functioning of the organism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.